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Abstract

A generalised mathematical model and analysis for integrated multi-channel vibration control–structure interaction

systems are developed. The governing equations describing the interactions between a generalised elastic structure and a

multi-channel electromagnetic excitation and control system are derived. Based on these equations, the stability and

dynamic response of the system are analysed. The introduction of an additional dynamic impedance matrix between

structure and control system allows vibration structure–control interaction mechanisms to be investigated. The generalised

theory provides a basis to measure exactly the dynamic parameters of the structure negating any influence of the excitation

and control system. It also allows the design of a more effective control system taking into account the interactions of the

control system with structural motions and vice versa. To illustrate the general formulations developed and their

applications, simple one- and two-channel systems are investigated using non-dimensional parameters.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The control of structural vibrations produced by earthquake, wind, engine, waves or other excitation source
can be achieved, for example, by modifying rigidities, masses or damping of the structural system under
excitation as well as by producing passive or active counter forces through suitable isolators or actuators [1].
Methods to control structural vibrations have been developed and used successfully. For example, approaches
are discussed by Housner et al. [1], which provide a detailed review of such developments, whereas Fuller et al.
[2] and Elliott [3] describe more fundamental theories and methods for active control.

The mechanism underlying active vibration control is to use the vibration signal measured from a controlled
structure as a feedback signal which is then amplified by a suitably chosen amplifier to drive various actuators
to produce counter forces to suppress the vibration level of the structure. A control system is, therefore, a
physical system consisting of several units involving, for example, various mechanical, electrical, magnetic or
hydraulic physical processes, connected to a structure such that the motion and characteristics of the structure
are controlled by the control system and vice versa. The control efficiency is affected by the dynamic motion of
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the structure. This phenomenon is referred to as a control–structure interaction (CSI). To design an effective
control system or to obtain more accurate structural characteristics unaffected by the measurement and
control system, an integrated interdisciplinary knowledge base is required relating to various control systems,
flexible structures and their physical coupling mechanisms.

CSI developments mainly focus on problems arising in aerospace engineering and the development of
protective systems. These include space station solar tracking controls [4–7], flexible space station freedom
attitude or orbit control coupling with attached flexible bodies [8–11] as well as a general study of the
dynamics and control of an arbitrary spacecraft with interconnected flexible bodies [12]. Practices in aerospace
engineering and protective systems demonstrate benefits occur when well-designed control systems are applied
to practical cases. For example, Dyke et al. [13] present studies demonstrating significant improvements in the
performance and robustness of a protective system when CSI effects are taken into account. Mohl and Davis
[14] discuss a CSI experiment in which the integration of active feedback control in a radar’s system-level
design is used to reduce mechanical constraints introduced in the original antenna design.

In the vibration control field, it has been widely accepted by theoretical analysis, experimental investigations
and practical applications that active feedback controls using displacement, velocity and acceleration
parameters can modify the effective mass, damping and stiffness of a mechanical system. The fundamental
principle involved in these mechanisms is described by Fuller et al. [2]. Electrical stiffness or damping
techniques based on displacement or velocity feedback approaches were adopted in aircraft vibration tests to
measure and to adjust the distribution of structural parameters [15] whereas, detailed investigations are
presented on active damping [16], adaptive structures [17] and active isolation units [18–21] for different
vibration isolation requirements.

Alkhatib and Golnaraghi [22] present a comprehensive critical review of active vibration control techniques
with examples from mechanical and civil engineering applications. On the basis of 156 references, they address
important issues and provide a detailed guide to the problems arising in the design of an active control system.
For example, the authors define and describe ‘‘a typical active vibration control system is an integration of
mechanical and electronic components in synergistic combination with computer/microprocessor control. The
major components of any active vibration control system are the mechanical structure influenced by
disturbance, sensors, controllers and actuators.’’ Therefore, to analyse such a system, it is essential to assemble
a set of coupled equations to describe the dynamics of the rigid or flexible structure, the dynamics of the
actuator and the behaviour of the control system. In general, to describe and understand the physical
interaction mechanisms of the integrated system, the developed mathematical model must correctly describe
the dynamics of each element and the resulting coupled equations cannot be solved separately but in unison.
However, as deduced from the details described in the review paper [22], this integrated coupling analysis has
not been fully addressed in structure–control interaction systems, because key effects are omitted in the
mathematical models. For example, (i) in Eq. (1) of the review paper, the measured output y depends only on
the displacement and velocity of the structure with omission of the effects of the structure’s acceleration and
actuator dynamics, (ii) in Eq. (23), the feedback control u ¼ �Gy is used to investigate the stability of the
system to determine a feedback gain matrix G but the actuator dynamics and the equation describing
the behaviour of the control system are not involved, (iii) furthermore, in the Section 17 of the review paper,
the actuator–structure interaction is only analysed. Therefore there is no consideration of the equation
describing the electrical–magnetic control system, which causes the difference between the feedback force
applied to the structure and the force (applied to the coil) produced by an electric–magnetic effect.

Because of these gaps in the review paper [22], the objective of this study is to construct an integrated
mathematical model which incorporates mechanical and electrical interaction mechanisms to investigate
structure–control interaction systems. To do so, we address this general problem by theoretically investigating
a generalised multi-channel vibration CSI system. To replicate vibration tests [23,24], the control system and
actuator described in the model are of the electromagnetic type. The paper presents a derivation of the
linearised differential equations governing the dynamics of the structure and actuator, the behaviour and
characteristics of the electromagnetic control systems and their interactions allowing the formulation and
numerical analysis of a set of generalised coupled matrix equations from which the interaction dynamics of the
integrated system is derived. In the mathematical model, the variables adopted to describe the mechanical
vibrations are displacements, velocities and accelerations, whereas, for the dynamics of the control system and



ARTICLE IN PRESS
J.T. Xing et al. / Journal of Sound and Vibration 320 (2009) 584–616586
components (e.g., sensors, power amplifiers, etc.), they are the electric currents and voltages. The stability of
the overall system and excited mechanical and electrical responses by external disturbances are analysed. From
the developed general mathematical model, by introducing simplifications, selected systems are deduced. To
further illustrate applications of the proposed general theory, a single channel system with an electromagnetic
actuator or exciter system is chosen and a detailed analysis of its behaviour presented.
2. Governing equations of a multi-channel vibration structure–control interaction system

To examine the interactions between a flexible structure and a multi-channel electromagnetic excitation and
control system, Fig. 1 schematically illustrates a possible generalised n-channel control system. The flexible
structure represents, for example, an aircraft, ship, simple beam or a component of a large system which
experiences excitations. The aim is to control the excited response at various positions on the structure
through imposed mechanisms and to understand the effect of one part of the assembled system on another.
Fig. 2 shows a flexible structure–single channel control interaction system including details of a proposed
electromagnetic exciter. The exciter produces an excitation force applied in a small volume around point A on
the structure through a thin rigid rod attached to the moving coil of the exciter. In addition, the positions of
excitation and measurement may not necessarily be at the same point. However, in a practical one-channel
system, the positions of excitation and measurement are best situated at the point where there is a significant
dynamic response to produce accuracy of measurement. Each channel illustrated in Fig. 1 is similar to the one
shown in Fig. 2 but also includes inter-connection between channels.
FFCn 

FBC1 FBCn

FFC1 

SAn SA1 

PAn PA1 
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Fig. 1. A typical multi-channel active control–structure interaction system. Notation: subscript a, b( ¼ 1, 2, 3,y, n) identify input and

measurement locations, SG a signal generator, SAa a summation amplifier, PAa a power amplifier, PRb a pre-amplifier, FFCb a force feed-

forward control unit, FBCb a displacement, velocity and acceleration feedback control unit, Fb a force transducer, Sb a dynamic response

signal transducer, Ea an electromagnetic exciter.
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Fig. 2. A single channel (a, b ¼ 1) active control–structure interaction system in which details of the electromagnetic exciter are shown.

Notation: ma mass of moving part (force transducer F, moving coil and connection rod between structure and exciter) attached to point a
on the structure, stiffness coefficient ka and viscous damping coefficient ca of a coil supporting unit connected to the magnetic body of the

exciter, Ma mass of the magnetic body of the exciter, stiffness coefficient Ka and viscous damping coefficient Ca of the suspension system

supporting the exciter.
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2.1. Elastic structure

To develop a comprehensive mathematical model of the system shown in Fig. 1, let us assume that the elastic
structure occupies domain V with fixed boundary Su and traction-free boundary ST. The unit normal vector ni

(i ¼ 1, 2, 3) points outwards from the structure. To aid notation, subscripts or superscripts a, b ( ¼ 1, 2, 3,y, n)
identify input and measurement locations, such that the coordinate x

b
i on the structure experiences a measured

displacement u
b
i excited by an input sinusoidal force ~f a ¼

~Fae
jOt of amplitude ~Fa and frequency O produced by the

electromagnetic exciter or actuator Ea applied in a small volume DVa6¼0 around point xa
i of the structure. The

electromagnetic device Ea can act as an exciter and/or actuator. For example, when acting as an exciter, signals
from the signal generator SG are its input and therefore it can be considered as a vibration source. As an actuator,
feedback signals are inputs, whereas as an exciter and an actuator, signals from both the generator and feedback
units are inputs. As normally adopted in mechanics, a positive force is defined as a pulling force applied to the
structure. The positive vector gai defines the direction along the axis of the electromagnetic exciter and towards the
excitation point xa

i . The positive displacement Ua of the magnetic body of the exciter Ea is along the direction gai .
The adoption of traditional notation [25] allows terms such as stress tensor sij, displacement vector ui and velocity
vector vi to retain their usual definitions as well as the complex elastic tensor E�ijkl ¼ ð1þ jzÞEijkl , where z denotes a
hysteretic damping factor describing the structure’s material characteristic, which is determined by experiments
[26]. In vibration analysis, a viscous damping is normally assumed. However, there are no viscous damping
coefficients readily available for structural materials. Therefore, it is usual to assume Rayleigh damping [22] or to
calculate an equivalent modal viscous damping coefficient using the hysteretic damping factor z and the
corresponding mode form of the structure, as described in Appendix A. This paper adopts the latter approach.

The governing equations describing the dynamics of the elastic structure shown in Fig. 1 are defined as follows [25].
Dynamic equation:

sij;j ¼ rui;tt þ
Xn

a¼1

~̂f aðx;x
aÞgai ; x 2 V . (1.1)

Here, the function ~̂f aðx;x
aÞ defines a force distribution function per unit volume around the excitation point

x
a in the form

~̂f aðx; x
aÞ ¼

~f a=DV a; x 2 DV a;

0; xeDV a:

(
(1.2)
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Since the volume DVa 6¼0, as same as for practical cases, for a continuous and differentiable function defined
on the body, such as the mode function jJ

i ðxÞ used in this paper, the following volume integration can be
obtained by using the mean value theorem for integration as follows:Z

V

jJ
i ðxÞ

~̂f aðx;x
aÞgai dV ¼

Z
DV a

jJ
i ðxÞ

~f a=DV agai dV ¼ jJ
i ðx

a
�Þ
~f ag

a
i ¼ fJaj

J
i ðx

aÞ ~f ag
a
i . (1.3)

Here, fJa ¼ ½j
J
i ðx

a
�Þg

a
i �=½j

J
i ðx

aÞgai � and xa� 2 DVa. It is known that the mode functions of a continuous elastic
structure are dependent of by its geometry, mass and stiffness distribution but independent of any external forces
applied to it. For the continuous elastic body studied in the paper, all mode functions of the body are well
continuous and differentiable with respect to the coordinates. Furthermore, as mentioned earlier, the volume
DVa is very small compared with the size of the total structure. Therefore, there should be no obvious difference
between the two values at any two points in this small volume DVa of the mode. This supports fJa ¼ 1 to be
chosen for engineering analysis that can reduce much cost without losing required accuracy. However, this
general parameter fJa is still introduced in following generalised formulations of the mathematical model.

Constitutive equation:

sij ¼ E�ijkl�kl ; x 2 V , (2)

Geometric relation:

�kl ¼
1
2
ðuk;l þ ul;kÞ; x 2 V , (3)

Boundary conditions:

sijnj ¼ 0; x 2 ST ;

ui ¼ 0; x 2 Su:

(
(4)

It is useful to mention that the governing equation in the tensor form given above cover all types of
structures in engineering. Appendix B gives the detailed explanation on it.

2.2. Excitation/control system

2.2.1. Laplace electromagnetic theorem

Let us assume that each electromagnetic exciter Ea obeys the Laplace theorem describing the
electromagnetic phenomena [27]. The dynamic current input ia(t) ¼ Ia e

jOt into the moving coil of the exciter
produces an electromagnetic force fa(t) ¼ Fa e

jOt between the moving coil and the outside magnetic body of the
exciter as well as an induced voltage ea ¼ Ea e

jOt satisfying the relations

f a ¼ iaBa ~La ¼ ia ~Ba, (5)

ea ¼ Ba ~La ~va ¼ ~Ba ~va. (6)

Here Ba represents the intensity of the electromagnetic field in which the coil moves, ~La denotes the effective
length of the conductor winding around the moving coil, ~Ba ¼ Ba ~La and ~va is the velocity of the moving coil
relative to the magnetic field. It is assumed that the thin rigid rod connects the moving coil to the position a on
the structure. Therefore, the absolute velocity of the moving coil equals the velocity vai at position a and its
absolute component along the direction gai is derived by the scalar product vai g

a
i of the two vectors vai and gai

[25], from which it follows that

~va ¼ vai g
a
i � Va ¼ _ua

i g
a
i �

_Ua. (7)

Here vai ¼ _ua
i represents the velocity at position a and V a ¼ _Ua denotes the velocity in the direction gai at

position a of the magnetic body Ea.

2.2.2. Dynamical and electrical equations of the exciter

By using Newton’s law [27], free body diagrams [28,29] and investigating the equilibrium of the latter with
inclusion of the effects of moving coil and magnetic body of the exciter [15] as well as using the same notations



ARTICLE IN PRESS
J.T. Xing et al. / Journal of Sound and Vibration 320 (2009) 584–616 589
for a ¼ 1 shown in Fig. 2, we derive the dynamic equations describing the motion of the moving coil with the
force transducer F shown in Fig. 2 and the magnetic body of the exciter, respectively, as

� ~f a þma €u
a
i g

a
i þ cað _u

a
i g

a
i �

_UaÞ þ kaðu
a
i g

a
i �UaÞ þ f a ¼ 0, (8)

Ma €Ua þ Ca _Ua � cað _u
a
i g

a
i �

_UaÞ þ KaUa � kaðu
a
i g

a
i �UaÞ � f a ¼ 0. (9)

The electric circuit equation of the moving coil takes the form [26]

La €Qa þ Ra _Qa þ Ĉ
�1

a Qa þ ea ¼ ~ea, (10)

where La, Ra, Ĉa, Qa and ~ea represent the electric inductance, resistance, capacitance, charge and input voltage
of the moving coil, respectively, and the electric current ia ¼ _Qa. The moving coil acts as a conductor, its
capacitance is infinite and therefore Eq. (10) can be represented as

La _ia þ Raia þ ea ¼ ~ea. (11)

2.2.3. Control strategy

Two control strategies are investigated herein. That is, motion feedback and force feed-forward
controls [2].

2.2.3.1. Feedback control. In a motion feedback control branch [2], the motion, such as the velocity
vb ¼ v

b
i g

b
i ¼ _ub

i g
b
i ¼ _ub, at position b is measured by a signal transducer Sb which is transferred as an input

signal voltage eas to the summation amplifier SAa through a pre-amplifier PRb and the feedback control unit
FBCb. This feedback control unit performs an integration and difference operation and can be adjusted to
produce the input signal voltage eas , including displacement, velocity and acceleration feedback control, to the
summation amplifier SAa. An application of the method describing feedback control [2] provides an equation
representing this feedback process in the form:

eas ¼
Xn

b¼1

gab
u ub þ gab

v _ub þ gab
a €ub� �

Hb
s ðOÞ, (12)

where gab
u , gab

v and gab
a denote the feedback gains to channel a from the displacement, velocity and acceleration

measured at station b ( ¼ 1, 2, 3,y, n), respectively, and Hb
s ðOÞ describes the transfer function from the signal

transducer Sb to the input of the summation amplifier SAa.

2.2.3.2. Feed-forward control. In a force feed-forward control loop [2], the feed-forward force ~f b applied at
position b on the structure is measured by a force transducer Fb which is transferred as an input signal voltage
eaf to the summation amplifier SAa through a pre-amplifier PRb and the force feedback control unit FFCb. The
equation describing this feed-forward control process [2] is obtained as

eaf ¼
Xn

b¼1

g
ab
f
~f bH

b
f ðOÞ, (13)

where g
ab
f represents the force feed-forward gain to channel a from the force measured at station b,

and H
b
f ðOÞ describes the transfer function from the force transducer Fb to the input of the summation

amplifier SAa.
It is assumed that the transfer function of the summation and power amplifiers is represented by Ha(O) and

the input voltage of the moving coil of the exciter [23,24] is derived as

~ea ¼ ðe
a
s þ eaf þ êaÞHaðOÞ, (14)

where êa represents a signal voltage input produced by the signal generator SG to the summation amplifier
SAa.
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2.3. Combined equations

The substitution of Eqs. (2) and (3) into Eqs. (1) and (4) gives

E�ijkluk;lj ¼ rui;tt þ
Xn

a¼1

~̂f aðx; x
aÞgai ; x 2 V ,

E�ijkluk;lnj ¼ 0; x 2 ST ,

ui ¼ 0; x 2 Su. (15)

These represent the classical displacement equations describing the dynamics of elastic structures. In this

equation the force ~̂f a applied to the structure is also unknown as well as the unknown displacement ui. These
forces are affected by the characteristics of the control system. Similarly, from Eqs. (5)–(14) the combined
equations describing the control system can be rewritten as

ma €u
a þ ca _u

a � ca _Ua þ kau
a � kaUa � ~Ba

_Qa �
~f a ¼ 0, (16)

Ma €Ua þ ðCa þ caÞ _Ua � ca _u
a þ ðKa þ kaÞUa � kau

a þ ~Ba
_Qa ¼ 0, (17)

Xn

b¼1

ðHab
a €ub þHab

v _ub þHab
u ubÞ þ

Xn

b¼1

H
ab
f
~f b � ðLa _ia þ RaiaÞ � ~Ba _u

a þ ~Ba _Ua þHaêa ¼ 0, (18)

where

Hab
a ¼ Hagab

a Hb
s ; Hab

v ¼ Hagab
v Hb

s ,

Hab
u ¼ Hagab

u Hb
s ; H

ab
f ¼ Hag

ab
f H

b
f ; ua ¼ uiðx

aÞgai . (19)

Eqs. (15)–(19) form a set of governing equations describing the dynamics of the structure–control
interaction system. In these coupled equations, the displacement field ui of the structure, the displacement Ua

of the magnetic body of the exciter, the resultant force ~f a applied to the structure and the electric current ia in
the moving coil are to be determined.
3. Analysis of control–structure interactions

3.1. Mode transformation and matrix equations

Let us assume that the natural modes and the corresponding natural frequencies of the structure free of any
excitation and measurement systems are represented by jI

i ðxÞ and oI (I ¼ 1,2,3,y), respectively. These
natural modes and frequencies satisfy the orthogonal relationships [26,27]Z

V

jI
i rj

J
i dV ¼ dIJ

~M
J
, (20)

Z
V

jI
i;jEijkljJ

k;l dV ¼ dIJ
~K

J
, (21)

where dIJ is the Kronecker delta function, ~M
J
and ~K

J
are the generalised mass and stiffness of the Jth mode of

the structure, respectively.

For convenience in this analysis, an equivalent viscous damping coefficient ~C
J
of mode J is introduced [30].

This equivalent viscous damping coefficient ~C
J
can be determined by equalling the dissipative energy caused

by an equivalent viscous damping in a vibration period of the Jth mode to one dissipated by the material
damping in the same vibration period (see Appendix A).
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Using the mode superposition method [30], supported by Sturm–Liouville theorem [31], we represent the
displacement of the structure in the form

ui ¼
X1
I¼1

jI
i qI , (22)

or in a matrix expression

ui ¼ Uiq; Ui ¼ j1
i j2

i � � � jN
i

h i
; q ¼ q1 q2 � � � qN

h iT
, (23)

where the first N modes are admitted in the analysis and qJ denotes a time-dependent generalised coordinate
requiring determination. The application of the mode transformation described in Eq. (23) in association with
the orthogonality relationships defined in Eqs. (20) and (21) as well as the introduction of a viscous damping
to replace the original material damping transform the dynamic Eqs. (15)–(19) into the following matrix form:

~M €qþ ~C _qþ ~Kqþ h ~U
T ~f ¼ 0, (24)

m ~U €qþ c ~U _qþ k ~U q� c _U� kU� ~B I� ~f ¼ 0, (25)

�c ~U _q� k ~U qþM €Uþ ðCþ cÞ _Uþ ðKþ kÞUþ ~B I ¼ 0, (26)

Ha
~U €qþ ðHv � ~BÞ ~U _qþHu

~U qþ ~B _U� ðL _Iþ RIÞ þHf
~f ¼ �H ê, (27)

where

~M ¼ diagð ~M
J
Þ; ~C ¼ diagð ~C

J
Þ; ~K ¼ diagð ~K

J
Þ, (28)

m ¼ diagðmaÞ; c ¼ diagðcaÞ; k ¼ diagðkaÞ, (29)

M ¼ diagðMaÞ; C ¼ diagðCaÞ; K ¼ diagðKaÞ, (30)

L ¼ diagðLaÞ; R ¼ diagðRaÞ, (31)

H ¼ diagðHaÞ; ~B ¼ diagð ~BaÞ; h ¼ diagðfJaÞ, (32)

ê ¼ ê1 ê2 . . . ên
� �T

; ~f ¼ ~f 1
~f 2 . . . ~f n

h iT
,

U ¼ U1 U2 . . . Ua
� �T

; I ¼ i1 i2 . . . ia
� �T

, (33)

~U
T
¼ /T

1 /T
2 . . . /T

n

h i
¼

j11 j12 . . . j1n

j21 j22 . . . j2n

..

. ..
. . .

. ..
.

jN1 jN2 . . . jNn

2
666664

3
777775; jJa ¼ jJ

i ðx
aÞgai , (34)

Hb ¼

H11
b H12

b � � � H1n
b

H21
b H22

b � � � H2n
b

..

. ..
. . .

. ..
.

Hn1
b Hn2

b � � � Hnn
b

2
666664

3
777775; b ¼ a; v; u; f . (35)

Eqs. (24)–(27) form a set of matrix coupled equations in which a total of N+3n variables are to be
determined. These are the generalised coordinate vector q (N variables) describing the structure’s motion and
the three vectors U, Q and ~f each of which is described by n variables defining the motion of the
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electromagnetic body, the electric current in the moving coil and the excitation force corresponding to one of
the n control channels.

Let us assume that the input signal voltages of all channels are sinusoidal expressed in the matrix form

ê ¼ Ê ejOt, (36)

where Ê represents a vector of the amplitudes of input voltages. Since the system is linear, all mechanical and
electrical dynamic responses are sinusoidal quantities with the same frequency. Therefore, these quantities can
be represented by

q ¼ ~Q ejOt; U ¼ ~U ejOt; I ¼ ~I ejOt; ~f ¼ ~F ejOt, (37)

where the corresponding amplitude vector of each variable is assumed. Substituting Eqs. (36) and (37) into
Eqs. (24)–(27), we obtain an integrated description of the interaction between a vibrating structure and a
multi-channel control system as expressed in the following matrix form:

~Z 0 0 h ~U
T

z̄ ~U �z � ~B �Î

�z ~U Z̄þ z ~B 0

H�1½jO ~B� Z

Þ

� ~U �jOH�1 ~B H�1Z �H�1Hf

2
666664

3
777775

~Q
~U
~I
~F

2
6664

3
7775 ¼

0

0

0

Ê

2
6664

3
7775. (38)

Here Î is a unit matrix of order n and

~Z ¼ ~Kþ jO ~C� O2 ~M; Z̄ ¼ Kþ jOC� O2M; Z ¼ Rþ jOL,

z̄ ¼ z� O2m; Z

Þ

¼ Hu þ jOHv � O2Ha; z ¼ kþ jOc, (39)

represent the dynamic modulus (or displacement impedance) matrices of the structure (see, for example, Ref.
[26]), the suspension systems of the exciters, the circuits of the moving coils, the moving coils with supporting
units, the motion feedback control system and the supporting units of the moving coils, respectively.
3.2. Stability of the coupled system

Eqs. (24)–(27) are a set of linear ordinary differential equations. The stability of these equations is governed
by its characteristic equation which is deduced from the determinant of the coefficient matrix of Eq. (38)
replacing jO in Eqs. (38) and (39) by an eigenvalue notation l [31] and it is expressed in the form

D ¼

~Z 0 0 h ~U
T

z̄ ~U �z � ~B �Î

�z ~U Z̄þ z ~B 0

H�1ðl ~B� Z

Þ

Þ ~U �lH�1 ~B H�1Z �H�1Hf

�����������

�����������
¼ 0. (40)

Stability of the coupled system requires that all eigenvalues l, denoting the solutions of Eq. (40), have
negative real parts. Constructing the Hurwitz determinants and requiring each to have a positive value [32], we
can determine the stability of the interacting system.
3.3. Dynamic response of the coupled system

Here the intention is to derive the dynamic response of a stable system subject to the excitation expressed by
Eq. (36), where O is a real positive frequency as mentioned in Section 2.1. For this stable system, the
eigenvalues l must have negative real parts and therefore, the pure imaginary number jO is not a solution of
Eq. (40). This implies that, in Eq. (38), the coefficient determinant D 6¼0 and it follows from Gram’s rule [31]
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that an unique solution vector is determined by

XI ¼
DI

D
ðI ¼ 1; 2; 3; 4Þ, (41)

where XI (I ¼ 1, 2, 3, 4) represents the four vectors ~Q, ~U, ~I and ~F, respectively, and DI denotes a determinant
with the Ith column of the determinant D replaced by the right-hand side vector of Eq. (38). This solution is
substituted into Eq. (26) to obtain the dynamic response of the interactive system.

3.4. Mechanical– electrical– control interactions

To highlight interactions between the mechanical system and the electrical or control system, the
elimination of the internal force vector ~F applied to the structure by the exciters allows rewriting of Eq. (38) in
the form

~Zþ h ~U
T
z̄ ~U �h ~U

T
z �h ~U

T ~B

�z ~U Z̄þ z ~B

H�1½jO ~B�Hf ðz̄� zÞ � Z

Þ

� ~U �H�1ðHf Z̄þ jO ~BÞ H�1 Z

2
664

3
775

~Q
~U
~I

2
64

3
75 ¼

0

0

Ê

2
64

3
75. (42)

From these equations, we deduce an equation describing the motion of the mechanical system influenced by
the electrical control units, namely,

ðZM þ ZMEÞ

~Q

~U

" #
¼

h ~U
T

�Î

" #
~BZ�1HÊ,

ZM ¼
~Zþ h ~U

T
z̄ ~U �h ~U

T
z

�z ~U Z̄þ z

2
4

3
5,

ZME ¼
h ~U

T ~BZ�1½jO ~B�Hf ðz̄� zÞ � Z

Þ

� ~U �h ~U
T ~BZ�1ðHf Z̄þ jO ~BÞ

� ~BZ�1½jO ~B�Hf ðz̄� zÞ � Z

Þ

� ~U ~BZ�1ðHf Z̄þ jO ~BÞ

2
64

3
75 (43)

and another equation describing the electrical dynamic equilibrium of the electrical control system influenced
by mechanical motions of the structure given by

Ê ¼ ðZE þ ZEM Þ~I,

ZE ¼ H�1Z,

ZEM ¼ H�1 fjO ~B�Hf ðz̄� zÞ � Z

Þ

g ~U �ðHf Z̄þ jO ~BÞ
h i ~Zþ h ~U

T
z̄ ~U �h ~U

T
z

�z ~U Z̄þ z

2
4

3
5
�1

h ~U
T ~B

� ~B

" #
. (44)

Here, the inverse matrix can be obtained using the following formulation:

~Zþ h ~U
T
z̄ ~U �h ~U

T
z

�z ~U Z̄þ z

2
4

3
5
�1

¼
G11 G12

G21 G22

" #
,

G22 ¼ ½Z̄þ z� z ~Uð ~Zþ h ~U
T
z̄ ~UÞ�1h ~U

T
z��1; G12 ¼ ð ~Zþ h ~U

T
z̄ ~UÞ�1h ~U

T
zG22,

G21 ¼ G22z ~Uhð ~Zþ ~U
T
z̄ ~UhÞ�1; G11 ¼ ð ~Zþ h ~U

T
z̄ ~UÞ�1 þG12z ~Uð ~Zþ h ~U

T
z̄ ~UÞ�1. (45)

In Eq. (43), ZM represents the dynamic modulus of the mechanical system consisting of the structure and
the mechanical parts of the exciters and ZME denotes an additional dynamic modulus to the mechanical
system due to the electrical control effects in the integrated interaction system. Similarly, in Eq. (44), ZE

represents the electrical modulus of the excitation-control system consisting of the electrical equipment and
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active control units whereas ZEM provides an additional modulus to the electrical control system arising from
the motions of the mechanical system.

The mathematical model and equations together with the solution procedure developed in this section
present a generalised theory to analyse a complex structure–control interaction system. The following
examples of a single channel system and a vibration test involving a more complex system illustrate aspects of
this generalised theory.

4. A single channel system

Fig. 2 represents a system of a single control and excitation channel in which the power amplifier and signal
measuring circuit have good direct current characteristics with transfer functions given by H1(O) ¼ 1,
H1

s ðOÞ ¼ 1 and H1
f ðOÞ ¼ 1, as required by normal vibration test equipment [15]. To understand more clearly

the interaction mechanism, we assume that the structure is modelled by a one degree of freedom system of
natural frequency os which equals the frequency of the first mode of the structure and the parameter f11 ¼ 1
defined in Eq. (1.3). To simplify description, we neglect sub-, super- and index ‘‘1’’ of the variables used in Fig. 2
and in the equations presented in Section 3, so that the variables defined in Eqs. (28)–(35) and (37) are
simplified to

~Z ¼ ~Z ¼ ~K þ jO ~C � O2 ~M ; Z̄ ¼ Z̄ ¼ K þ jOC � O2M; Z ¼ Z ¼ Rþ jOL,

z̄ ¼ z̄ ¼ k þ jOc� O2m; Z

Þ

¼ Z

Þ

¼ gu þ jOgv � O2ga; z ¼ z ¼ k þ jOc; H ¼ H ¼ 1,

Hu ¼ Hu ¼ gu; Hv ¼ Hv ¼ gv; Ha ¼ Ha ¼ ga; Hf ¼ Hf ¼ gf ; ~U ¼ 1. (46)

Eqs. (38) and (42) now take the forms

~Z 0 0 1

z̄ �z � ~B �1

�z Z̄ þ z ~B 0

jO ~B�
_

Z �jO ~B Z �gf

2
66664

3
77775

u

U

i

~F

2
6664

3
7775 ¼

0

0

0

Ê

2
6664

3
7775, (47)

and

~Z þ z̄ �z � ~B

�z Z̄ þ z ~B

jO ~Bþ gf
~Z �

_

Z �jO ~B Z

2
664

3
775

u

U

i

2
64

3
75 ¼

0

0

Ê

2
64

3
75, (48)

respectively.
For discussion purposes, it is convenient to express these equations in a non-dimensional form. To do so, we

define a standard displacement u0 and electric current i0 as

u0 ¼ ~Mg= ~K ; i0 ¼ Ê=R, (49)

as well as introducing the following non-dimensional parameters

c ¼
~BÊ

R ~Mg
¼

~Bi0
~Mg
; �azs ¼

~Bg

2osÊ
¼
~Bgo�1s

2Ê
,

Zs ¼ O=os; os ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
~K= ~M

q
; zs ¼

~C

2 ~Mos

,

kc ¼ k= ~K ; �c ¼ c= ~C; mc ¼ m= ~M ; �ezs ¼
Los

2R
,

km ¼ K= ~K ; �m ¼ C= ~C; mm ¼M= ~M,

kg ¼ ~Mggu=ð ~KÊÞ; �g ¼ ~Mggv=ð ~CÊÞ; mg ¼ gga=Ê; f g ¼
~Mggf =Ê. (50)
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Physically, u0 and i0 represent the static displacement of the structure subject to its gravitational force ~Mg

and the static electric current of the coil conditional on a prescribed electric potential Ê. The non-dimensional
parameter c denotes the ratio of an electromagnetic force ~Bi0 to the gravitational force ~Mg and ea is the
ratio of the non-dimensional damping ~Bgo�1s =ð2ÊÞ caused by the induced voltage of the exciter to the
structure’s damping zs. These two non-dimensional quantities c and ea are the characteristic parameters
describing mechanical–electric interactions. The other non-dimensional parameters in Eq. (50) have their
usual meanings [29].

Pre-multiplying both sides of the resultant non-dimensional Eq. (48) by a diagonal matrix diag ~Mg
� ��1

;
h

~Mg
� ��1

; Ê
i
; we transform Eq. (48) into the non-dimensional matrix equation

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75

~u
~U
~i

2
64

3
75 ¼

0

0

1

2
64
3
75, (51)

where

~u ¼ u=u0; ~U ¼ U=u0; ~i ¼ i=i0,

A11 ¼ ð1þ kcÞ þ 2jð1þ �cÞzsZs � ð1þ mcÞZ
2
s ,

A12 ¼ A21 ¼ �ðkc þ 2j�czsZsÞ,

A13 ¼ �A23 ¼ �c,

A22 ¼ ðkm þ kcÞ þ 2jð�m þ �cÞzsZs � mmZ
2
s ,

A31 ¼ ðf g � kgÞ þ 2jðf g þ �a � �gÞzsZs � ðf g � mgÞZ
2
s ,

A32 ¼ �2j�azsZs,

A33 ¼ 1þ 2j�ezsZs. (52)

4.1. Stability

The characteristic equation of this example is derived from Eq. (38) or by equalling to zero the determinant
of the coefficient matrix of Eq. (47) or (48) as given by

D ¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

�������
������� ¼

1

3!
eijkelmnAilAjmAkn ¼ 0, (53)

where eijk denotes the permutation symbol [25]. By algebraic manipulation it is shown that the characteristic
equation of the system is given by

DðlÞ ¼ a5l
5
þ a4l

4
þ a3l

3
þ a2l

2
þ a1lþ a0, (54)

where

l ¼ jZs; an ¼
1

n!

dnD

dln

����
l¼0
; n ¼ 0; 1; . . . ; 5. (55)

Using the Hurwitz criteria [32], we obtain the necessary and sufficient conditions for stability as
expressed by

a540; a440;
a4 a5

a2 a3

�����
�����40; a040,
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a4 a5 0

a2 a3 a4

a0 a1 a2

��������

��������
40;

a4 a5 0 0

a2 a3 a4 0

a0 a1 a2 a3

0 0 a0 a1

�����������

�����������
40. (56)

Eq. (53) is an algebraic equation of eigenvalue l and all coefficients are real. Therefore, the complex
solutions of this equation are conjugate. The necessary and sufficient conditions for stability require all
eigenvalues to have negative real parts. To solve Eq. (53) or to determine the values of the Hurwitz’s
determinants in Eq. (56) requires a numerical method. For a large system, the numerical process is as follows:
(1)
 Determine all elements Aij defined in Eq. (52) according to the chosen physical parameters as well as the
value of l.
(2)
 Calculate the constants ai using Eqs. (54) and (55) through a loop summation process.

(3)
 Determine the stability of the system using Eq. (56).
4.2. Dynamic response and interactions

From Eq. (51), two equations similar to Eqs. (43) and (44) are derived in the form

ZMD

~u

~U

" #
¼ ðZM þ ZMEÞ

~u

~U

" #
¼ �A�133

A13

A23

" #
,

ZM ¼
A11 A12

A21 A22

" #
; ZME ¼ �

A13

A23

" #
A�133 ½A31 A32 � (57)

and

ZED
~i ¼ ðZE þ ZEM Þ~i ¼ 1; ZE ¼ A33,

ZEM ¼ � A31 A32

� � A11 A12

A21 A22

" #�1
A13

A23

" #
¼ �

A31ðA11 þ 2A12 þ A22ÞA13

A11A22 � A12A21
. (58)

Eq. (57) can be further written as

ZSD ~u ¼ FS,

ZSD ¼ ðA11 � A13A�133 A31Þ � ðA12 � A13A�133 A32ÞðA22 � A23A�133 A32Þ
�1
ðA21 � A23A�133 A31Þ,

F S ¼ �A13A�133 þ ðA12 � A13A�133 A32ÞðA22 � A23A�133 A32Þ
�1A�133 A23, (59)

allowing investigation of the impact of the excitation system on the characteristics of the structure.
Through these last three equations, the compatibility of the system and the interactions between the

structure, exciter unit and the control systems are demonstrated. Here, ZMD denotes the impedance of the
mechanical system, including the structure and the mechanical parts of the exciter, influenced by the electrical
and control system which adds an additional term ZME to the impedance ZM of the pure mechanical system.
Similarly, ZED denotes the impedance of the electrical and control system arising from the mechanical
system which adds an additional term ZEM to the dynamic impedance ZE of the pure electrical and control
system. ZSD represents the impedance of the pure structure caused by the excitation system including the
mechanical and electrical systems of the excitation system as well as the control system.

The non-dimensional responses (i.e. the displacement vector of the mechanical structure and the electric
current of the electrical control unit) of the system subject to a unit input voltage can be solved from Eqs. (57)
and (58). Here, we analyse the following special cases.
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4.2.1. c ¼ 0 ¼ ~BÊ
�

R ~Mg

In this case, we have A13 ¼ A23 ¼ 0. Therefore, as indicated by Eqs. (57) and (58), the motions of both
structure and magnetic body and the additional impedances ZME and ZEM are all zero indicating no
interaction between mechanical and electrical systems. Physically, c ¼ 0 implies that there is no excitation
force produced by the electric exciter to the structure.
4.2.2. �a ¼ 0 ¼ ~Bg
�
2oszsÊ

As shown in Eq. (50), the non-dimensional parameter ea involves the induced voltage of the exciter caused
by the motion of its coil. Therefore, this case represents no induced voltage produced by the motion of the
structure and the impedance of the electric system is not influenced by the structure’s motion. If no active
control is considered A31 ¼ 0 then the additional impedance ZEM is of zero value.

To demonstrate these cases, we choose the parameter values

Structure : ~M ¼ 1; ~K ¼ 1; zs ¼ 0:01.

Coil unit : mc ¼ 0:05; kc ¼ 0:25; �c ¼ 2; �e ¼ 0:01.

Magnetic body unit : mm ¼ 0:4; km ¼ 0:1; �m ¼ 2. (60)

These values give the frequency of the structure os ¼ 1, the supporting frequency of the coil unit oc ¼ 2.236
and the suspension frequency of the magnetic body of the exciter om ¼ 0.5. These values mirror a practical
aircraft vibration test [15] where the first natural frequency of the aircraft is lower than the frequency of the
coil support unit and the suspension frequency of the magnetic body is required to be lower than the first
natural frequency of the aircraft.

Fig. 3 shows the dynamic responses of the interaction system subject to a unit input voltage. For example, as
shown in Fig. 3(a) and (b), the motions of the structure and the exciter are zero when c ¼ 0 and the electric
current in the coil of the exciter vanishes when c ¼ 0 or ea ¼ 0.
4.3. Mechanical– electrical interactions with no active control

Let us assume that there are no active controls in the system, i.e. the control gains g11
s ¼ 0 (s ¼ u, v, a, f),

and therefore the parameters kg, eg, mg and fg in Eq. (54) are all zero. The system described by Eq. (51)
reduces to a mechanical structure–electromagnetic excitation interaction system in which A31 ¼ �A32 in
Eqs. (57)–(59).
4.3.1. Mechanical impedance of the structure interacting with the excitation system

To investigate the impact of the excitation system on the natural characteristics of the structure, we use
Eq. (52), to express Eq. (59) in the form

Zn
SD ¼ Zs þ z̄c þ Zse þ Zsm, (61)

where superscript n of Zn
SD denotes the case with no active control and

Zs ¼ 1þ 2jzsZs � Z2s ; Zm ¼ km þ 2j�mzsZs � mmZ
2
s ; Zsm ¼ �

ðzc þ ZeÞ
2

Zm þ zc þ Ze

,

z̄c ¼ kc þ 2j�czsZs � mcZ
2
s ; zc ¼ kc þ 2j�czsZs; Zse ¼

2j�aczsZs

1þ 2j�ezsZs

. (62)

Here, Zs represents the impedance of the structure with no interactions, z̄c denotes the added impedance due
to the pure mechanical impedance of the moving coil unit of the exciter but no electromagnetic interaction is
involved which adds an additional impedance represented by Zse, and Zsm is the additional impedance caused
by the motion of the magnetic body of the exciter. As shown in Eq. (62) for the impedance expressions, the real
component involves the stiffness and mass characteristic and the imaginary component reflects the damping
behaviour of the system.
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displacement ~u of the structure, (b) non-dimensional displacement ~U of the exciter, and (c) non-dimensional current ~i in the coil of the

exciter.
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The influence of the excitation system on the natural characteristics of the structure is summarised as
follows:

(1) Due to the interaction between the structure and the suspension system of the magnetic body, the
coupled system has two degrees of freedom as shown in Fig. 4. It is shown that only one peak exists in the
receptance curve wn

s ¼ 1=jZsj for the structure at its non-dimensional frequency Zs ¼ 1 whereas two peaks
occur in the receptance curve wn

SD ¼ 1
�

Zn
SD

�� �� of the coupled system.
The effect of the magnetic body of the exciter on the structure is represented by the impedance Zsm. If the

magnetic body is fixed to a rigid foundation, its suspension stiffness K ¼N and therefore Zsm ¼ 0 and the
magnetic body does not influence the characteristic of the structure. As shown in Fig. 4, for a non-dimensional
stiffness value km ¼ 10 of the suspension system of the magnetic body of the exciter one peak of the receptance
curve wn

SD ¼ 1
�

Zn
SD

�� �� of the coupled system disappears. For vibration tests in a range of lower excitation
frequencies, to fix the magnetic body of the exciter on a solid foundation provides a good test design
arrangement. However, for a vibration test involving higher frequencies, an idealised rigid foundation in a
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laboratory may not be realised. To solve this practical difficulty, the magnetic body of the exciter is supported
by a very soft spring with a supporting frequency om ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
at a value much lower than the first natural

frequency os of the structure, which can significantly reduce the effect of the suspension system of the exciter
on the natural characteristics of the structure. As shown in Fig. 4, for a non-dimensional stiffness km ¼ 0.01
the right peak of the receptance curve wn

SD ¼ 1
�

Zn
SD

�� �� of the coupled system is closer to the peak of the
receptance curve for km ¼ 10. Therefore, the measured mechanical effect of the magnetic body of the exciter
on the structure is largely reduced.

(2) The mechanical parts of the moving coil unit of the exciter add additional mass, damping and stiffness to
the structure. Due to this effect, as shown in Fig. 4, there exist differences between the receptance curves of the
structure and the coupled system idealised by a large non-dimensional stiffness km ¼ 10 of the suspension
system of the magnetic body. To reduce the influence of the moving coil system on the natural characteristics
of the structure, smaller values of mass m, stiffness k and damping c of the moving coil and its supporting
elements are necessary. Fig. 5 shows the curves of the receptance of the coupled system impacted by the non-
dimensional stiffness kc and mass mc of the moving coil unit of the exciter. It is found that a reduction of
stiffness value kc moves the curve to the left and a reduction of mass value mc shifts the curve to the right. The
case of kc ¼ 0 gives a peak at a non-dimensional frequency less that 1 due to the effect of the mass of the coil
system. Similarly, the case mc ¼ 0 produces a peak at a frequency larger than 1 due to the effect of the stiffness
of the coil system. Naturally, as shown in Fig. 6, kc ¼ 0 and mc ¼ 0 produce a peak at frequency Zs ¼ 1 which
is the same value as the natural frequency of the structure but the height of the peak is lower due to the
damping of the coil system.

(3) As demonstrated in Eq. (62), the electromagnetic field interaction produces a complex impedance
involving frequency-related damping and stiffness influences to the structure as given by

Zse ¼
2j�aczsZs

1þ 2j�ezsZs

¼
2j�aczsZs þ 4�a�ecz

2
sZ

2
s

1þ 4�2ez
2
sZ2s

, (63)

in which the denominator is dependent on the non-dimensional excitation frequency Zs. Here two non-
dimensional parameters c and ea are involved. To investigate the influence of the electromagnetic field on the
natural characteristics of the structure, Fig. 7 shows the receptance wn

SD ¼ 1
�

Zn
SD

�� �� of the coupled system with
non-dimensional stiffness value km ¼ 10 dependent on values of c and ea. It is demonstrated that larger values
of c or ea cause an increase in the damping characteristics of the system, which suggests that the additional
impedance behaves mainly as a damping mechanism although its real part is non zero. Fig. 8 shows the case
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Fig. 5. The effect of the stiffness and mass of the moving coil system on the natural characteristics of the structure.
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assuming km ¼ 0.1 and the results show the occurrence of two peaks with one introduced at the lower
suspension frequency. It is also found that by increasing the value of c or ea increases the damping and
decreases the value of the right peak associated with the structure’s resonance. However, the value of the left
peak associated with the suspension system increases, implying a large magnetic body motion in the vibration
test which should be avoided. Therefore, for km ¼ 0.1 case, a good designed high quality exciter should posses
a low value of c or ea.

4.3.2. Electrical impedance of the exciter influenced by mechanical motion

Eq. (58) provides description of the impedance Zn
ED of the electrical excitation system influenced by the

structure’s motions which adds an additional impedance Zn
EM to the electrical system. Here, superscript ‘‘n’’

represents the case of no active control in the system. A variation of frequency in the vibration test causes the
denominator of Eq. (58) to reach a small value and therefore a large change of value of the added impedance
Zn

EM . For example, in the case of the magnetic body of the exciter fixed to a foundation, the stiffness of the
suspension spring is infinite (i.e. km ¼N) which reduces Eq. (58) to

Zn
ED ¼ ZE þ Zn

EM ; Zn
EM ¼

2j�aczsZs

ð1þ kcÞ þ 2jð1þ �cÞzsZs � ð1þ mcÞZ2s
. (64)
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For an excitation force frequency tending to the natural frequency value Zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kcÞ=ð1þ mcÞ

p
of the

structure with the coil system, the added impedance

Zn
EM ¼

�ac
1þ �c

(65)

can become a large value because of resonance.
Based on the assumed data given in Eq. (60), Fig. 9 illustrates the electrical receptance wn

E ¼ 1=jZE j of the
electric circuit and its dynamic receptance wn

ED ¼ 1
�

Zn
ED

�� �� influenced by mechanical motions of the structure
and the excitation system. It is shown that the electrical current supplying the moving coil is influenced by
mechanical motions, especially in the range of frequency near to the vibration peaks. This is because the large
added impedance caused by the mechanical motions changes the dynamic impedance of the electrical system.
As a result, the large change of the output current ~i and therefore the force applied to the structure are
modified. In vibration tests it is therefore better to keep the amplitude of the excitation force unchanged with
frequency, and the power amplifier system designed with a sufficiently large negative current feedback to
suppress the current change caused by mechanical resonances.
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4.4. Control– structure interactions with active controls

We now discuss the CSIs arising in the coupled solution given by Eqs. (57)–(59). To compare findings with
the no control case discussed in Section 4.3, the term A31 in Eq. (52) is rewritten as

A31 ¼ �A32 þ A
g
31,

A
g
31 ¼ ðf g � kgÞ þ 2jðf g � �gÞzsZs � ðf g � mgÞZ

2
s , (66)

where A
g
31 represents the component associated with the control gain. The super- and subscript g denote

control gain terms.

4.4.1. Mechanical impedance of the structure influenced by the control gains

From Eqs. (59) and (62), it follows that

Z
g
SD ¼ Zs þ z̄c � A13A�133 A31 � ðA12 � A13A�133 A32ÞðA22 � A23A�133 A32Þ

�1
ðA21 � A23A�133 A31Þ. (67)

As shown in Eq. (66), a force feed-forward control influences not only the force applied to the structure but
also the stiffness, damping and mass characteristics of the structure. A positive force-forward control gain
increases the parameters of stiffness, damping and mass of the structure. Acceleration, velocity and
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displacement feedback controls influence mass, damping and stiffness parameters of the structure,
respectively. A positive motion (displacement, velocity or acceleration) feedback gain decreases the
corresponding parameter of the structure. This mechanism suggests that active control can be used to reduce
the influence of the mechanical components on the characteristics of the structure.

Fig. 10 shows the effect of active control on the receptance of the structure–control interaction system
(km ¼ 10). It demonstrates that the force control parameter fg adjusts the stiffness, damping and mass of the
coupled system but does not shift the receptance curves along the frequency axis. Positive active stiffness (kg)
and mass (mg) parameters shift the receptance curves to the left and right, respectively. The active damping
parameter eg only changes the amplitude of the peaks of the receptance curves. By suitably choosing active
control parameters, e.g. fg ¼ 0, kg ¼ kc, mg ¼ mc and eg ¼ ea+ec we can reduce the added mass, stiffness
and damping influences of the moving coil of the exciter on the receptance of the system. As illustrated in
Fig. 10(e), by choosing suitable values of the active control parameters, the receptance of the coupled system
(km ¼ 10) is exactly the same as the one for the structure.
4.4.2. Electrical impedance of the control system affected by mechanical motion

From Eq. (58), the dynamic impedance of the coupled system is rewritten as

Z
g
ED ¼ ZE þ Z

g
EM ; Z

g
EM ¼ �

A31ðA11 þ 2A12 þ A22ÞA13

A11A22 � A12A21
. (68)

As shown in Eq. (66), active control can cause negative or positive influences on the impedance. Therefore,
by suitably choosing the control gain value we may eliminate all effects of the motion on the electrical system.
For example, in the case of the magnetic body fixed to a rigid foundation, Eq. (68) reduces to

Z
g
EM ¼

c½ðf g � kgÞ þ 2jðf g þ �a � �gÞzsZs � ðf g � mgÞZ
2
s �

ð1þ kcÞ þ 2jð1þ �cÞzsZs � ð1þ mcÞZ2s
. (69)

By adjusting control parameters identified by subscript g, we can cause Z
g
EM ¼ 0. Fig. 11 shows the effects

of the control parameters on the dynamic electric receptance wg
ED of the structure–control interaction system

adopting km ¼ 10. In comparison with the electrical receptance wE of the electric circuit it is not influenced by
mechanical motions. In a similar manner as demonstrated in Fig. 10, the force control parameter fg adjusts the
stiffness, damping and mass of the coupled system and positive active stiffness (kg) and mass (mg) parameters
move the receptance curves to the left and right, respectively. The active damping parameter eg only changes
the amplitude of the peaks of the receptance curves. Also, by suitably choosing active control parameter values
fg ¼ kg ¼ mg and eg ¼ ea+fg we can reduce the additional impedance Z

g
ED caused by the interaction, as

demonstrated in Fig. 11(e). It is seen that by increasing the value of km from 10 to 100, the magnetic body
suspension spring tends to infinity and the effect of Z

g
ED on wg

ED gradually vanishes.
5. A vibration test

We now investigate the vibration test system shown in Fig. 12. The rigid bar of length L and mass density r
per unit length is supported by two springs of stiffness ~K and two dampers of damping coefficient ~C. The bar
is vibrated by two electromagnetic exciters and, for simplicity, the supporting magnetic bodies and electric
channels, etc., as shown in Figs. 1 and 2 for the complete generalised model, have been omitted. The aim of the
vibration test is to measure the two natural frequencies of the system. Due to the effect of the stiffness (k),
damping (c) and mass (m) of the coil system of each exciter, the measured frequencies are not the real
frequencies of the system investigated. Active feedback controls are introduced to eliminate the effects of the
excitation system in order to obtain the actual frequencies of the system.

The equations describing the natural vibration of this system are expressed in the matrix form

rL=3 rL=6

rL=6 rL=3

" #
€u1

€u2

( )
þ

~C 0

0 ~C

" #
_u1

_u2

( )
þ

~K 0

0 ~K

" #
u1

u2

( )
¼

0

0

	 

. (70)
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The natural frequencies and mode shapes of the system are

os1 ¼

ffiffiffiffiffiffiffi
2 ~K

rL

s
; os2 ¼

ffiffiffiffiffiffiffi
6 ~K

rL

s
; ~U ¼ ½j1 j2

� ¼
1 1

1 �1

� �
. (71)

Therefore, the matrices ~M; ~K; ~C in Eq. (39) now take the following forms:

~M ¼
1 1

1 �1

� � rL=3 rL=6

rL=6 rL=3

" #
1 1

1 �1

� �
¼ ~Mls; ~M ¼ rL; ls ¼

1

1=3

" #
, (72)

~K ¼
1 1

1 �1

� � ~K 0

0 ~K

" #
1 1

1 �1

� �
¼ ~Kjs; js ¼ 2Î, (73)

~C ¼
1 1

1 �1

� � ~C 0

0 ~C

" #
1 1

1 �1

� �
¼ ~Ces; es ¼ 2Î. (74)

We assume that the two exciters have the same mechanical characteristics and their power supply units have
the same perfect direct current characteristics. As a result of these assumptions we have

Hb ¼
g11

b g12
b

g21
b g22

b

" #
ðb ¼ a; v; u; f Þ; H ¼

1

1

� �
¼ Î; and ~B ¼ ~BÎ;

R ¼ RÎ; L ¼ LÎ; Ê ¼ Ê½ 1 1 �T:

(75)

To obtain non-dimensional equations, we use the standard displacement u0 and electric current i0, as given
in Eq. (49), i.e. u0 ¼ ~Mg= ~K ; i0 ¼ Ê=R from which we introduce the following non-dimensional parameters,
vectors and matrices:

Zs ¼ O=os; os ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
~K= ~M

q
; zs ¼

~C

2 ~Mos

,

w ¼
~BÊ

R ~Mg
Î ¼

~Bi0
~Mg

Î; zsea ¼
~Bg

2osÊ
Î ¼

~Bgo�1s

2Ê
Î; zsee ¼

Los

2R
Î,

jc ¼ ðk= ~KÞÎ; ec ¼ ðc= ~CÞÎ; lc ¼ ðm= ~MÞÎ,

jm ¼ ðK= ~KÞÎ; em ¼ ðC= ~CÞÎ; lm ¼ ðM= ~MÞÎ,

jg ¼
~Mg

~KÊ

g11
u g12

u

g21
u g22

u

" #
; eg ¼

~Mg

~CÊ

g11
v g12

v

g21
v g22

v

" #
; lg ¼

g

Ê

g11
a g12

a

g21
a g22

a

" #
; fg ¼

~Mg

Ê

g11
f g12

f

g21
f g22

f

2
4

3
5,

~Q ¼ Q=u0; ~U ¼ U=u0; ~I ¼ I=i0. (76)
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By applying these non-dimensional variables and matrices, we now transform Eq. (42) into the following
form:

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75

~Q
~U
~I

2
64

3
75 ¼

0

0

1

2
64
3
75; 0 ¼

0

0

� �
; 1 ¼

1

1

� �
, (77)

where

A11 ¼ ðjs þ 2jeszsZs � lsZ
2
s Þ þ

~U
T
ðjc þ 2jeczsZs � lcZ

2
s Þ
~U,

A12 ¼ AT
21 ¼ �

~U
T
ðjc þ 2jeczsZsÞ,

A13 ¼ � ~U
T
w,

A23 ¼ w,

A22 ¼ ðjm þ jcÞ þ 2jðem þ ecÞzsZs � lmZ
2
s ,

A31 ¼ ½�jg þ 2jðea � egÞzsZs þ ðfglc þ lgÞZ
2
s �
~U,

A32 ¼ �fgðjm þ 2jemzsZs � lmZ
2
s Þ � 2jeazsZs,

A33 ¼ Îþ 2jeezsZs. (78)

Eq. (43) and the corresponding displacement impedance matrices are given by

ðZM þ ZMEÞ

~Q

~U

" #
¼ �

A13

A23

" #
Z�11,

ZM ¼
A11 A12

A21 A22

" #
,

ZME ¼
�A13A

�1
33 A31 �A13A

�1
33 A32

�A23A
�1
33 A31 �A23A

�1
33 A32

2
4

3
5. (79)

For numerical calculations, we assume that the magnetic bodies of the two exciters are fixed to a rigid
foundation and that their chosen parameter values are given by w ¼ Î ¼ ea and ee ¼ 0. Here, ee ¼ 0 implies
that the electrical induction of the moving coil is neglected. Fig. 13 shows the receptance curves of the system,
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where Q1s and Q2s represent the two peaks of the structure not influenced by the exciters and Q1e and Q2e
denote the results caused by the two exciters. Due to the influence of the two exciters, the original peaks move
to the left, so that the measured natural frequencies of the structure influenced by the exciters are lower than
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the real ones. Fig. 14(a)–(c) provides predictions derived using an active feedback control with inputs of
displacement (jg), velocity (eg) and acceleration (lg), which adjust the stiffness, damping and inertial (mass)
parameters, respectively, as discussed in Section 4. Fig. 15 illustrates results for an active feedback control
satisfying

jg ¼ jc; eg ¼ ec þ ea; lg ¼ lc. (80)

It is seen that the influence of the exciters on the structure are totally eliminated and therefore the receptance
is exactly the same as the one for the original structure allowing the two natural frequencies of the system to be
determined accurately. It is noted that the full compensation condition given in Eq. (80) only involves the
parameters of the exciter which should be known for any well-designed exciter. Therefore, a full compensated
exciter can be designed using active control techniques. Some of these techniques, such as, an electrically
generated stiffness (displacement feedback) and damper (velocity feedback) have been successfully employed
in aircraft vibration tests [15].
6. Conclusions and discussions

A generalised mathematical model and corresponding analysis method for integrated multi-channel
vibration structure–control interaction systems are developed. The theory includes the following aspects:
(1)
 the governing equations describe a generalised interdisciplinary interaction system consisting of an elastic
structure, multi-channel electromagnetic excitation and control units;
(2)
 the generalised mathematical model presented allows analysis of the stability and mechanical and electrical
dynamic responses of the system;
(3)
 the influence of the electrical system or active control unit on the dynamic characteristics of the mechanical
system and vice versa can be analysed using the developed generalised mathematical model,
(4)
 the number of degrees of freedom admitted to describe the structure is arbitrary, which can be chosen
depending on the complexity of the problem under investigation;
(5)
 the theoretical number of possible control channels is arbitrary, with its value chosen depending on the
requirements of the problem;
(6)
 motion feedback control including displacements, velocities and accelerations at multi-points on the
structure and multi-force feed-forward control strategies are considered and their influences adjusted by
the four control gain parameters in the mathematical model;
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(7)
 mechanical–electrical interaction systems with no active control are special cases of the generalised system
in which all active control gains are set to zero.
The underlying mechanisms of mechanical system (including structure and exciter)–electrical control system
interactions are described and investigated by introducing an additional impedance matrix of the control
system to the mechanical system and vice versa. The generalised theory provides a basis to investigate the
following engineering problems: (1) to measure exactly the dynamic parameters of the structure using active
control to reduce the influences of mechanical parts and electrical factors of the exciter and control systems;
(2) to design a more effective and accurate control system to include the influences of mechanical motions;
(3) to design a high quality excitation system for use in vibration tests.

Based on the developed general formulations, a single one-channel system and a more complex system are
investigated using non-dimensional parameters to demonstrate the applicability of the general theory and
analysis methods.

For practical applications of the developed mathematical model and solution approaches, the following
points need consideration:
(1)
 The model is based on a linear approximation which assumes the structure, actuators and control units are
governed by linear equations and the control power may be infinite. In practice, a mechanical or electrical
system is nonlinear and the power is finite. For a system with very significant nonlinear elements, an
accurate nonlinear model is required. The limits of control power, geometrical space to fix related
equipment of the active control system, etc., require additional consideration.
(2)
 To design an effective vibration control system, many analytical, numerical and experimental tasks need
addressing. This study provides an integrated mathematical model as well as numerical approach to
consider all interaction mechanisms for structure–control interaction systems, which, in the design process,
can be adopted to determine the necessary parameters by numerical calculations. For a real design, due to
the approximations in the mathematical model, experimental information is necessary to check, to modify
and to improve the initial design. This investigation presents a fundamental basis on which to address
some gaps arising in the analysis of structure–control interactions. The mathematical model has partially
been confirmed successfully by practical experiments [15] and in combination with known issues involved
in designing suitable systems [22], practical problems may be better addressed.
(3)
 The developed mathematical model uses the orthogonal modes and frequencies of natural vibrations of the
involved structures. As used in aircraft designs and vibration analysis, these data on the natural vibrations
of structures are obtained using two approaches. In the design stage, when the aircraft has not been
produced, a full aircraft structural finite element analysis in association with computer-aided design has to
be carried out to obtain these data for other dynamic analysis, such as flutter analysis and control system
design. Naturally, these data in the design stage can be modified to satisfy various requirements. While the
first two prototypes of the designed airplane are produced, the first one with only structure elements is used
for its static breakdown test to confirm its designed strength and the second one with other equipments is
used for its ground vibration test and then flight test. In the ground vibration test of full scale aircraft [15],
the natural orthogonal modes and frequencies of the aircraft are measured. These measured data are used
for the further flutter analysis of aircraft, which is the most important task to confirm its dynamical safety
before a flight test. Due to this reason, the measured data are expected to be accurate with as less as
possible affects by the test equipments. Therefore, applications of feedback controls to eliminate vibrators
affects on aircraft test are required [15].
(4)
 The governing equations in time domain given in Section 2 of this paper are generalised ones which do not
require the transfer functions of control systems being constant, although it is normally designed having
very good constant frequency characteristics in lower frequency range for aircraft sinusoidal vibration test
system. However, if disturbance excitations are not in sinusoidal forms, the equations in frequency domain
based on a sinusoidal force, given in Section 3, can not be directly used. There are two following ways to
carry out the analysis for this case. The first one is to complete a frequency analysis to obtain all harmonic
components of the given disturbance and then the superposition principle is used through a summation of
the results of all harmonic excitation components to obtain the integrated result. The second one is a more
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generalised approach that requires a frequency transformation of the equations in Section 2 to obtain the
equations in frequency domain in which the frequency spectrum of arbitrary prescribed excitations, such
as a mechanical impulse, is involved. As suggested by referees, this is a further investigation regarding to
practical applications of the method to more complex practical cases.
Appendix A

On using the mode transformation in Eq. (23) in association with orthogonality relationships, i.e. Eqs. (20)
and (21), we find that Eq. (15) describing the dynamics behaviour of the structure is transformed into

~M €qþ ð1þ jzÞ ~Kq ¼ � ~U
T ~f ¼ F̄, (A.1)

where F̄ represents a generalised force vector in the mode coordinate system. The equation describing the
motion of the Jth mode is written as

~M
J
€qJ þ ð1þ jzÞ ~K

J
qJ ¼ F̄

J
. (A.2)

Let us assume that the frequency of the excitation force equals the natural frequency ~oJ of the Jth mode of
the structure, i.e.

F̄
J
¼ F̂ ej ~oJ t; ~oJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K

J
.
~M

J

r
. (A.3)

Since the system is linear, the dynamic response represented by the generalised coordinate qJ takes the form

qJ ¼ QJ ej ~oJ t, (A.4)

which, when substituted into Eq. (A.2), gives that

� ~o2
J
~M

J
QJ þ jz ~K

J
QJ þ ~K

J
QJ ¼ F̂

J
. (A.5)

Eq. (A.5) describes the vibration of the structure, with a hysteretic damping represented by the complex
elastic tensor E�ijkl ¼ ð1þ jZÞEijkl , in the Jth natural frequency and the corresponding mode.

In vibration analysis [26,28–30], a viscous damping model is often used. Information on the viscous
damping of the material of a structure is rarely, if ever known, and therefore, in an engineering analysis, an
equivalent viscous damping coefficient [26] can be obtained as follows. Let the equivalent viscous damping
coefficient of the Jth natural mode of the structure be represented by ~C

J
. The vibration of the structure (with

the equivalent viscous damping) in the Jth natural frequency and associated mode can be derived using a
similar approach to the one adopted to derive Eq. (A.1). Following such a procedure, we find that Eq. (A.5)
for the case incorporating the equivalent viscous damping coefficient ~C

J
is obtained as

� ~o2
J
~M

J
QJ þ j ~oJ

~C
J
QJ þ ~K

J
QJ ¼ F̂

J
. (A.6)

A comparison of Eqs. (A.5) and (A.6) gives the equivalent viscous damping coefficient ~C
J
of the Jth natural

mode of the structure as

~C
J
¼

z ~K
J

~oJ

. (A.7)

As often used in vibration analysis [26,28–30], the normalised natural mode is chosen so that a unit
generalised mass ~M

J
¼ 1 in Eq. (20) is obtained. From Eqs. (A.3) and (A.7), it follows that

~K
J
¼ ~o2

J ;
~C

J
¼ z ~oJ . (A.8)

Therefore, for a uniform isotropic material with a hysteretic damping factor z, the corresponding equivalent
viscous damping coefficient ~C

J
is proportional to the natural frequency ~oJ .

Furthermore, to understand this equivalent viscous damping, we need to calculate the energy dissipated in a
vibration cycle by damping. The generalised coordinate in Eq. (A.4) is rewritten as

qJ ¼ jQJ j ejð ~oJ t�jÞ, (A.9)
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where jQJ j and j represent the real amplitude and real phase angle of the generalised coordinate qJ. The
damping force associated with the hysteretic damping defined in Eq. (A.2) is given by

Fh ¼ jz ~K
J
qJ ¼ jz ~K

J
jQJ j ejð ~oJ t�jÞ. (A.10)

The energy dissipated in a vibration cycle by hysteretic damping is calculated as follows:

W h ¼

Z 2p= ~oJ

0

RefFhgdðRefqJgÞ

¼

Z 2p= ~oJ

0

z ~oJ
~K

J
jQJ j2sin2ðoJt� jÞdt ¼ zp ~K

J
jQJ j2. (A.11)

Here, Re{x} denotes the real part of a complex variable x. In a similar approach using Eqs. (A.6) and (A.9),
we obtain the equivalent viscous damping force and its dissipation of energy as given by

Fv ¼ j ~oJ
~C

J
jQJ j ejð ~oJ t�jÞ, (A.12)

W v ¼

Z 2p= ~oJ

0

RefFvgdðRefqJgÞ

¼

Z 2p= ~oJ

0

~o2
J
~C

J
jQJ j2sin2ðoJt� jÞdt ¼ p ~oJ

~C
J
jQJ j2. (A.13)

By equality of energy dissipated in a vibration cycle by hysteretic and equivalent viscous damping, i.e.
Wh ¼Wv, we derive Eq. (A.7). Therefore, physically, the equivalent viscous damping coefficient ~C

J

represented by Eq. (A.7) has a specific representation. That is, any non-viscous damping can be idealised
by an equivalent viscous damping which dissipates the same amount of energy per vibration cycle. The
introduction of an equivalent viscous damping allows use of the well-developed vibration analysis
theory [28,29], based on a viscous damping assumption, to study the vibration of a system with non-viscous
damping. This approach in association with vibration tests has often been used to model the damping
of a complex system. In vibration experiments [15], it was shown that measurements of the energy dissipated in
a vibration cycle of the system by damping allowed determination of its equivalent viscous damping
coefficient.

Appendix B

A practical engineering structure (such as an airplane, car, building or a 3-D dam, etc.), is a composite body
consisting of many types of structures. Eqs. (1)–(4) cover the corresponding equations describing the dynamics
of each type of structure. To explain this, we represent the displacement, strain and stress of the structure in
the column vectors u, e and r under a coordinate system o�xyz (x ¼ x1, y ¼ x2, z ¼ x3), respectively. For
different types of structures used in engineering, these vectors are listed in Table B1. Based on these notations,
Table B1

Corresponding kinematic and static variables in various problems

Problem Displacement vector uT Strain vector eT Stress vector rT

Bar u exx sxx

Beam w kxx Mxx

Plane stress u, v exx, eyy, exy sxx, syy, sxy

Plane strain u, v exx, eyy, exy sxx, syy, sxy

Axisymmetric u, v exx, eyy, exy, ezz sxx, syy, sxy, szz

Three-dimensional u, v, w exx, eyy, ezz, exy, eyz, ezx sxx, syy, szz, sxy, syz, szx

Plate bending w kxx, kyy, kxy Mxx, Myy, Mxy
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the governing Eqs. (1)–(4) are rewritten in an equivalent matrix form

DTr ¼ ru;tt þ
Xn

a¼1

~̂f aðx;x
aÞca; x 2 V , (B.1)

r ¼ ð1þ jzÞE e; x 2 V , (B.2)

e ¼ Du; x 2 V , (B.3)

mTr ¼ 0; x 2 ST ;

dTu ¼ 0; x 2 Su:

(
(B.4)

Here, E denotes an stress–strain matrix involving Young’s modulus E and Poisson’s ratio m of the materials
of structures, D and d represent two differential operator matrices and n is another operator matrix relating to
a unit normal vector [nx ny nz]

T on the force boundary of the body. These matrices corresponding to
different types of problems are given in Table B2 and B3. The set of equations defining the natural vibration
of the system (no damping and external forces) is obtained when the stress and strain are eliminated from
Eqs. (B.1)–(B.4). That is

DTEDu ¼ ru;tt; x 2 V ,

mTEDu ¼ 0; x 2 ST ,

dTu ¼ 0; x 2 Su. (B.5)

The solutions of this set of equations define the natural frequencies and modes of the system. For complex
engineering structures consisting of many different types of structural members, there are no available
theoretical solutions of Eq. (B.5). A numerical approach has to be used to solve the problem. The powerful
finite element method and well-developed computer software may be the best choice to complete the
eigenvalue analysis defined by Eq. (B.5). Based on the obtained natural frequencies and modes, the developed
Table B2

Corresponding matrices D, n and d in various problems

Problem Matrix D Matrix n Matrix d

Bar ½q=qx� ½nx� 1

Beam ½q2=qx2� ½ 1 q=qx � ½ 1 q=qx �

Plane stress & strain q=qx 0

0 q=qy

q=qy q=qx

2
64

3
75

nx 0

0 ny

ny nx

2
64

3
75

1 0

0 1

� �

Axisymmetric q=qx 0

0 q=qy

q=qy q=qx

1=x 0

2
66664

3
77775

nx 0 0

0 ny 0

ny nx 0

0 0 nz

2
6664

3
7775

1 0

0 1

� �

Three-dimensional q=qx 0 0

0 q=qy 0

0 0 q=qz

q=qy q=qx 0

0 q=qz q=qy

q=qz 0 q=qx

2
6666666664

3
7777777775

nx 0 0

0 ny 0

0 0 nz

ny nx 0

0 nz ny

nz 0 nx

2
6666666664

3
7777777775

1 0 0

0 1 0

0 0 1

2
64

3
75

Plate bending q2=qx2

q2=qy2

2q2=qx qy

2
64

3
75

1 0 0 q=qx 0

0 1 0 0 q=qy

0 0 1 q=qy q=qx

2
64

3
75

½ 1 q=qx q=qy �
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Table B3

Stress–strain matrices for isotropic materials and the problems in Table B1

Problem Stress–strain matrix E

Bar E

Beam EI

Plane stress

E

ð1� m2Þ

1 m 0

m 1 0

0 0
1� m
2

2
6664

3
7775

Plane strain
Eð1� mÞ

ð1þ mÞð1� 2mÞ

1 m̄ 0

m̄ 1 0

0 0 m̂

2
64

3
75

Axisymmetric

Eð1� mÞ
ð1þ mÞð1� 2mÞ

1 m̄ 0 m̄

m̄ 1 0 m̄

0 0 m̂ 0

m̄ m̄ 0 1

2
66664

3
77775

Three-dimensional

Eð1� mÞ
ð1þ mÞð1� 2mÞ

1 m̄ m̄ 0 0 0

m̄ 1 m̄ 0 0 0

m̄ m̄ 1 0 0 0

0 0 0 m̂ 0 0

0 0 0 0 m̂ 0

0 0 0 0 0 m̂

2
6666666664

3
7777777775

Plate bending

Eh3

12ð1� m2Þ

1 m 0

m 1 0

0 0
1� m
2

2
6664

3
7775

m̄ ¼ m= 1� mð Þ; m̂ ¼ 1� 2mð Þ= 2ð1� mÞð Þ, h ¼ thickness of plate, I ¼ moment of inertia.
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formulations in this paper can be used to investigate the structure–control interactions. In this paper, we aim
to provide the generalised theory and the related physical concepts on vibration structure–control interactions.
Therefore, the simple examples are used to explain the important concepts. The interested reader may follow
the formulations described in this paper to create a computer software for generalised vibration structure–
control analysis.
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